ALLEGATO Attività 2-3 Relazione DELLE ATTIVITà SVOLTE NEL 2019/20 per il progetto Zafferano Puro e Certo: ovvero nuove tecniche di coltivazione ed un sistema innovativo di tracciabilità genetica

Attività 2 - Produzione di zafferano e di cormi

Le attività di campo dell'annata agraria 2019-20 sono state tutte eseguite secondo quanto previsto dal progetto: impianto dei cormi dalla seconda metà di agosto fino ai primi di settembre, preparazione delle tesi sperimentali, raccolta giornaliera dei fiori dai vari trattamenti ed essiccazione degli stigmi, analisi qualitativa dello zafferano, rimozione e pulitura dei cormi a fine stagione, conta e rilevamento delle dimensioni dei cormi, monitoraggio dei tempi per eseguire le varie operazioni.

Produzione di zafferano

I dati ottenuti dalle otto aziende sono stati analizzati dal punto di vista statistico. I dati relativi alla produzione di stigmi essiccati sono risultati distribuiti normalmente (test di Shapiro-Wilk, W= 0.90662, P<0.0001), e non è stato necessario procedere ad alcuna trasformazione degli stessi.

Tabella 1 - ANOVA per la produzione di zafferano (g/m²) nel 2019

Fonte di variazione	GdL	Devianze	Varianze	Test F	Pr > F
Repliche	3	0.47989209	0.15996403	1.23	0.3041
Azienda	7	23.75075959	3.39296566	26.17	<.000
Tesi	3	10.59699695	3.53233232	27.25	<.000
Azienda×Tesi	19	13.31095909	0.70057679	5.40	<.000
Errore	69	8.94530082	0.12964204		
Totale	101	75.23345841			

Differenze statisticamente significative sono emerse per le fonti di variazione Azienda, Tesi e Azienda×Tesi (Tabella 1). Nel 2019 la produzione media è stata di 1,31 g/m². La tabella 2 riporta le produzioni medie per le singole aziende. La produzione più elevata è stata registrata

dall'Azienda Venturi, seguita da Porta Sole, Mazzuoli e Vinerbi, e queste da tutte le altre (P<0.001). Risultati interessanti sono emersi anche dalla tecnica produttiva, con produzioni statisticamente superiori della tesi Cassone con terriccio ad hoc (per la composizione consultare la Relazione primo anno) rispetto al Cassone con terra di campo. Queste produzioni sono risultate anche superiori rispetto a quelle ottenute in pieno campo con bulbi aziendali e bulbi Mazzuoli (controllo) (P<0.001).

Tabella 2 – Produzioni medie per le otto aziende

AZIENDA	Produzione‡ (g/m²)
Venturi†	2.4670 A
Porta Sole	1.8751 B
Mazzuoli	1.6972 BC
Vinerbi	1.5269 C
Fontanelle	0.8673 D
Ro.lo.	0.7850 D
Alfonsi	0.7562 D
Zafferano e d'intorni	0.5252 D

[†]Nel 2018 l'azienda era denominata Brunozzi

Tabella 3 – Produzioni medie per le quattro tesi

AZIENDA	Produzione‡ (g/m²)							
Cassone con terriccio ad hoc	1.7151 A							
Cassone con terra aziendale	1.3480 B							
Parcelle in Campo	0.9561 C							
Controllo (bulbi Mazzuoli)	0.7770 C							

[‡]Medie seguite da lettere diverse sono diverse per P>0.01

Con i dati della seconda stagione è stato possibile condurre un'analisi della varianza combinata per confrontare le produzioni delle singole aziende e delle tesi sperimentali nei due anni di prova e mettere in evidenza eventuali differenze tra i due anni e interazioni significative di secondo e terzo ordine. La Tabella 4 riporta l'analisi combinata delle produzioni di zafferano per metro quadrato. Non sono state rilevate differenze significative tra le repliche e tra i due

[‡]Medie seguite da lettere diverse sono diverse per P>0.01

anni. Sono invece risultate significative le differenze tra le Aziende e tra le Tesi sperimentali. La non significatività della interazione Anno×Tesi indica che i trattamenti si sono comportati nello stesso modo nei due anni. La significatività dell'interazione Anno×Azienda indica che le produzioni medie per azienda hanno fatto registrare un comportamento contrastante tra il 2018 e 2019.

Tabella 4 - ANOVA combinata per la produzione di zafferano (g/m²)

Fonte di variazione	GdL	Devianze	Varianze Test F		Pr > F
Rep	3	0.6002	0.2000	2.42	0.1285
Anno	1	0.0495	0.0495	0.60	0.4397
Azienda	7	15.5950	2.2279	27.01	<.0001
Tesi	3	18.9676	6.3225	76.65	<.0001
Anno×Azienda	7	9.5835	1.3691	16.6	<.0001
Anno×Tesi	3	0.2859	0.0953	1.16	0.3292
Azienda×Tesi	20	9.9787	0.4989	6.05	<.0001
Anno×Azienda×Tesi	18	7.3046	0.4058	4.92	<.0001
Errore	138	11.3823	0.0825		
Totale	201	94.2103			

Nel 2018 la produzione media di zafferano è stata leggermente superiore a quella del 2019 (1,38 vs. 1,31 g/m²), ma questa differenza non è risultata significativa dal punto di vista statistico. Dalle osservazioni riguardanti la durata della raccolta emerge che nel primo anno la stagione è stata leggermente più lunga e questo può aver influito positivamente sulla produzione.

In Figura 1 sono riportati i *box plot* riguardanti le produzioni medie e relativi intervalli di variazione nelle otto aziende, indipendentemente dagli anni e tesi sperimentali, e ci forniscono uno spaccato della variabilità osservata. Le produzioni medie delle aziende nei due anni sono

risultate altamente significative (P<0,0001) (Tabella 4). La produzione più elevata è stata registrata dall'azienda Venturi (VEN), significativamente più elevata di quelle registrate a Porta Sole, Vinerbi e Mazzuoli (FIN, VIN e MAZ), e queste a loro volta significativamente superiori alle altre - Fontanelle (CHI), Ro.lo. (MOR), Alfonsi (LIP) e Zafferano e d'intorni (GIA), confermando quanto visto per il secondo anno (Figura 2).

In Figura 3 sono riportati i *box plot* riguardanti le produzioni medie per le quattro tesi sperimentali, i bulbi Mazzuoli in terra (usati come controllo), i bulbi aziendali allevati in campo (Campo), i bulbi Mazzuoli allevati in cassoni con terra di campo (Cass) e in cassoni con terriccio ad hoc (CasTer). Per la composizione del terriccio si rimanda alla relazione del primo anno. I valori riportati sono quelli medi indipendentemente dagli anni e aziende. Differenze altamente significative (P<0,0001) sono emerse tra tutte le tesi sperimentali (Tabella 4). Rispetto al controllo le produzioni dei bulbi aziendali sono risultate significativamente superiori, probabilmente per un migliore adattamento alle condizioni pedoclimatiche delle diverse aziende. Per quanto riguarda la tecnica colturale, possiamo affermare che nei due anni di prova le produzioni di zafferano nei cassoni sono risultate significativamente superiori a quelle su terreno. Inoltre, le produzioni nei cassoni con bulbi allevati con terriccio ad hoc sono risultate significativamente superiori a quelle di bulbi allevati in terreno aziendale (P<0.001) (Figura 4).

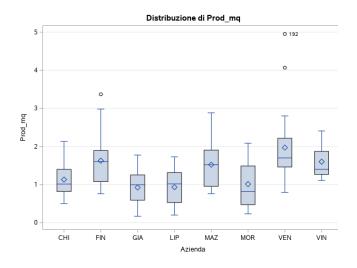


Figura 1 - Box plot delle aziende nei due anni di prova

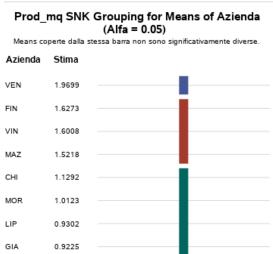
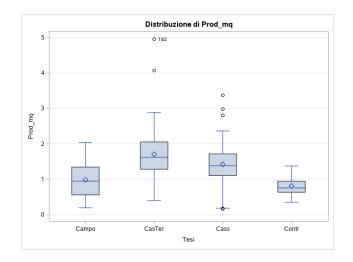



Figura 2 - Separazione delle medie per le aziende nei due anni di prova

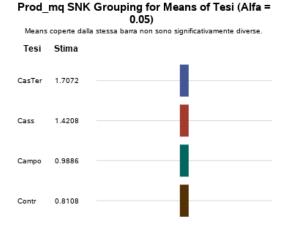


Figura 3 - Box plot delle tesi nei due anni di prova

Figura 4 – Separazione delle medie per le tesi nei due anni di prova

Produzione di cormi

I risultati delle analisi statistiche relativi alla produzione del numero di cormi e peso (g) per metro quadrato per il 2018 e 2019 sono riportati nelle Tabelle 5-8. I risultati del primo anno non erano stati riportati nella prima relazione in quanto la conta e il peso dei cormi è stata effettuata durante l'estate 2019. Anche per i dati relativi al numero e peso totale di cormi prodotti per metro quadrato la distribuzione è risultata normale (W=0.89463 e W=0.925901, entrambi P<0.0001) per cui non è stato necessario effettuare alcuna trasformazione. Dall'analisi statistica condotta per ciascun anno emerge in maniera chiara come non sono emerse differenze tra le repliche, indice di un buon controllo dell'errore sperimentale. Differenze altamente significative sono invece emerse per tutte le altre fonti di variazione (Azienda, Tesi e interazione Azienda×Tesi).

Tabella 5 - ANOVA per la produzione di cormi di zafferano (n/m²) nel 2018

Fonte di variazione	GdL	Devianze	Varianze	Test F	Pr > F
Repliche	3	712.7	237.6	0.70	0.555
Azienda	6	20815.1	3469.2	10.25	<.0001
Tesi	3	20684.5	6894.8	20.37	<.0001
Azienda×Tesi	14	59916.7	4279.8	12.65	<.0001
Errore	54	18274.3	338.4		
Totale	80	122482.0			

Tabella 6 - ANOVA per la produzione di cormi di zafferano (g/m²) nel 2018

	<u> </u>			, ,	
Fonte di variazione	GdL	Devianze	Varianze	Test F	Pr > F
Repliche	3	114408.5	38136.2	0.19	0.9058
Azienda	6	37003633.4	6167272.2	30.00	<.0001
Tesi	3	16326151.2	5442050.4	26.47	<.0001
Azienda×Tesi	14	44850933.2	3203638.1	15.58	<.0001
Errore	54	11102342.2	205598.9		
Totale	80	113289000.7			

Tabella 7 - ANOVA per la produzione di cormi di zafferano (n/m²) nel 2019

				٠ .	
Fonte di variazione	GdL	Devianze	Varianze	Test F	Pr > F
Repliche	3	1208.9	403.0	0.70	0.555
Azienda	6	371859.7	61976.6	107.88	<.0001
Tesi	3	9775.7	3258.6	5.67	0.002
Azienda×Tesi	14	153571.4	10969.4	19.09	<.0001
Errore	52	29872.5	574.5		
Totale	78	624479.7			

Tabella 8 - ANOVA per la produzione di cormi di zafferano (g/m²) nel 2019

Fonte di variazione	GdL	Devianze	Varianze	Test F	Pr > F	
Repliche	3	655114	218371.3	1.10	0.3576	
Azienda	6	45012830	7502138.3	37.78	<.0001	
Tesi	3	2575174	858391.2	4.32	0.0085	
Azienda×Tesi	14	30582450	2184460.7	11.00	<.0001	
Errore	52	10325916	198575.3			
Totale	78	102645319				

Nel 2018 (Tabella 9) la migliore tesi sia per numero di cormi che per peso di cormi per unità di superficie è risultata Cassone con terriccio ad hoc (P<0.01). Questo risultato non è stato confermato nel 2019. In effetti la stagione 2019 è stata particolarmente siccitosa sia durante l'inverno ma soprattutto durante la primavera, il periodo in cui avviene la proliferazione di nuovi bulbi ed il loro ingrossamento. Probabilmente stress idrici in questo periodo hanno influenzato negativamente sia il peso che il numero dei cormi, e questo è risultato più evidente nei cassoni dove il terreno a disposizione dei bulbi è inferiore rispetto a quello dei bulbi allevati in parcelle in pieno campo.

L'azienda Vinerbi non è riportata in quanto non ha fornito i dati riguardanti numero e peso dei cormi in entrambi gli anni. Le produzioni più elevate in entrambi gli anni sono state registrate nell'azienda Venturi (Tabella 10). Le analisi combinate per i due anni (Tabella 11) mostrano lo stesso andamento già descritto, ma mentre per il numero di cormi non sono emerse differenze tra i due anni, differenze significative sono invece state registrate per il peso dei cormi prodotti. Come descritto in precedenza lo stress idrico non sembra aver influito sulla differenziazione di nuovi cormi ma sul loro peso. Una conferma si è avuta misurando il peso medio dei cormi nelle due annate in tre aziende e, su 9600 dati, il peso medio è risultato significativamente inferiore nel 2019 rispetto al 2018 (15,30 νs . 21,33 g, P<0.0001, rispettivamente).

Tabella 9 – Cormi prodotti (N/m² e g/m²) nelle tesi sperimentali nel 2018 e 2019

	201	8	2019		
AZIENDA	N° cormi/m²	Peso g/m²	N° cormi/ m²	Peso g/m²	
Cassone con terriccio ad hoc	157.4 A	3464.1 A	109.37 B	2006. A 6 B	
Cassone con terra aziendale	154.3 B	2411.3 B	A 132.11 B	1636. 5 B	
Parcelle in Campo	126.0 C	2773.0 B	141.15 A	2151. 9 A	
Controllo (bulbi Mazzuoli)	107.0 C	2572.4 B	114.00 B	1639. 8 B	

Medie seguite da lettere diverse sono diverse per P>0.01

Tabella 10 - Produzione di cormi (N/m² e g/m²) nelle aziende del progetto nel 2018 e 2019

	20	18	2019		
AZIENDA	N° cormi/m²	Peso g/m ²	N° cormi/m²	Peso g/m ²	
Venturi	167.8 A	4073. 4 A	283.6 A	3695.9 A	
Zafferano e d'intorni	158.3 AB	2051. 0 D	102.8 BC	1405.8 C	
Ro.lo.	150.9 ABC	3029. 7 C	109.2 BC	1612.7 C	
Porta Sole	146.0 BC	3490. 9 B	126.7 B	2094.1 B	
Mazzuoli	140.7 BC	2281. 1 D	71.3 D	1461.4 C	

Sottomisura 16.2.2 - Focus Area 3A - Determina Ministeriale/Dirigenziale DD n.5931 del 11/06/2018 - Zafferano puro e certo

Fontanelle	136.0 C	2866. 2 C	90.6 CD	1552.4 C
Alfonsi	117.2 D	2340. 6 D	49.4 E	899.0 D
Vinerbi	-	-	-	-

Medie seguite da lettere diverse sono diverse per P>0.01

Tabella 11 - ANOVA combinata per la produzione di cormi di zafferano (N/m² e g/m²) nei due anni

		Numero di cormi			Peso	dei cormi	
Fonte di variazione	GdL	Varianze	Test F	Pr > F	Varianze	Test F	Pr > F
Repliche	3	157.1	0.35	0.7927	38175.6	0.19	0.9041
Anno	1	959.2	2.11	0.1494	14819226.6	73.15	<.0001
Azienda	6	44843.7	98.55	<.0001	13593099.5	67.09	<.0001
Tesi	3	7413.6	16.29	<.0001	5121393.3	25.28	<.0001
Anno×Azienda	6	21894.3	48.12	<.0001	455370.5	2.25	0.0439
Anno×Tesi	3	9330.1	20.5	<.0001	1944715.6	9.6	<.0001
Azienda×Tesi	16	10828	23.8	<.0001	4010381.7	19.79	<.0001
Anno×Azienda×Tesi	12	3263.2	7.17	<.0001	904067.2	4.46	<.0001
Errore	109	455			202598.7		
Totale	159						

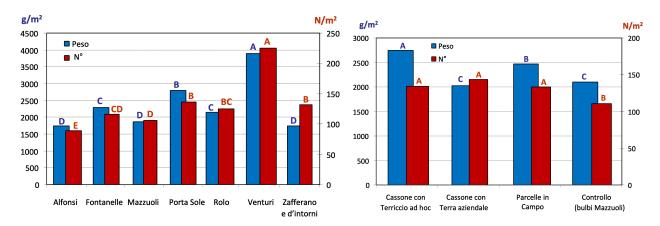


Figura 5 - Produzioni medie aziendali nei due anni

Figura 6 - Produzioni medie nei due anni delle tesi

Attività 3 - Qualità del prodotto

I risultati delle analisi qualitative dello zafferano sono riportati in Tabella 12. Dall'analisi statistica non sono emerse differenze significative né per la fonte Azienda che per la fonte Tesi in tre dei quattro parametri analizzati: umidità, potere amaricante, e potere colorante; per il potere aromatico invece sono emerse differenze significative tra le aziende, con i valori di Alfonsi, Porta Sole e Venturi significativamente superiori a Zafferano e d'intorni e a Ro.lo.; lo zafferano delle altre aziende si è posizionato con valori intermedi (P<0.01). Tutti i valori riportati in tabella classificano il prodotto nella classe I di merito.

Tabella 12 – Risultati delle analisi qualitative dello zafferano

AZIENDE	Controllo	CAMPO	CASSONE AZIENDAL E	CASSONE TERRICCIO	Media	Signif.	
	Umidità (%)						
Alfonsi	8.409	8.171	8.656	8.525	8.44		
Fontanelle	7.955	7.714	7.682	7.275	7.66		
Mazzuoli	8.342	8.226	7.774	7.344	7.92		
Porta Sole	6.986	7.375	7.455	8.096	7.48		
Ro.lo.	8.742	8.036	7.637	7.758	8.04		
Venturi	8.061	8.062	8.033	6.611	7.69		
Vinerbi	7.765	7.190	7.024	5.732	6.93		
Zafferano e d'intorni	7.618	7.923	7.895	7.913	7.84		
Media	7.924	7.789	7.643	7.247	7.65		
		POTERE AM	1ARICANTE				
Alfonsi	86.0	85.0	89.5	91.0	87.88		
Fontanelle	85.0	92.0	95.5	106.5	94.75		
Mazzuoli	89.0	93.0	92.5	93.0	91.88		
Porta Sole	88.0	91.5	100.0	95.0	93.63		
Ro.lo.	105.0	104.0	99.0	98.0	101.50		
Venturi	93.0	98.0	89.5	100.0	95.13		
Vinerbi	98.0	93.5	95.0	91.5	94.50		
Zafferano e d'intorni	80.0	93.5	94.0	96.5	91.00		
Media	91.1	95.1	95.1	97.2	94.63		

Sottomisura 16.2.2 - Focus Area 3A - Determina Ministeriale/Dirigenziale DD n.5931 del 11/06/2018 - Zafferano puro e certo

Alfonsi	32.0	32.0	33.0	30.5	31.88	Α
Fontanelle	28.0	27.0	28.5	30.5	28.50	ABC
Mazzuoli	30.0	29.5	29.5	25.5	28.63	ABC
Porta Sole	42.0	34.0	26.5	27.5	32.50	Α
Ro.lo.	25.0	26.0	24.5	26.0	25.38	С
Venturi	27.0	29.0	33.5	30.0	29.88	А
Vinerbi	27.0	28.5	29.5	31.0	29.00	AB
Zafferano e d'intorni	26.0	27.0	25.0	26.5	26.13	BC
Media	29.3	28.7	28.1	28.1	28.57	
Media	29.3	28.7	28.1	28.1	28.57	
Media		28.7 POTERE COL		28.1	28.57	
Media				28.1	28.57	
	1	POTERE COL	ORANTE			
Alfonsi	247.0	POTERE COL 234.0	ORANTE 233.0	247.0	240.3	
Alfonsi Fontanelle	247.0 240.0	POTERE COL 234.0 257.0	ORANTE 233.0 253.5	247.0 283.0	240.3 258.4	

267.5

264.5

256.0

256.9

Medie seguite da lettere diverse sono diverse per P>0.01

Media

Venturi

Vinerbi

Zafferano e d'intorni

Attività 4 - Caratterizzazione genetica del materiale coltivato

259.0

279.0

232.0

250.9

Nel periodo 1 luglio 2019 – 30 settembre 2020, sono state saggiate le prime combinazioni di marcatori molecolari SSR su DNA estratto nel corso del primo anno. La scelta dei marcatori è stata fatta consultando dei riferimenti bibliografici specifici (Rubio-Moraga et al. 2009; Nemati et al. 2012; Namayandeh et al. 2013) (Tabella 13).

224.0

263.0

259.0

253.4

267.0

256.0

267.0

262.1

254.4

265.6

253.5

255.8

Tabella 13 Marcatori SSR testati sui campioni di zafferano. Nome del primer e relativa sequenza nucleotidica.

Primers	Sequenza
CSMIC10F	AATCACACACAACATGGTCGTT
CSMIC10R	TGTTTAACCCAGCTAGCAGAAT
CSMIC15F	AATTTGACCGTTGGATAACACC
CSMIC15R	AATCACTTCTCTCTGCCGATG
CSMIC25F	GTCTCCTTCGCTATCTCCTTGA
CSMIC25R	ACCTTCAAGAAGATCAGCAAT
CSMIC26F	ATCACTCATAACTCTCCATGA
CSMIC26R	AGCTAGCAGATCACATAGGT
CSMIC19F	GGCCTAGCTAGCAGAATCACAA
CSMIC19R	AGCTAGCAGAATCACACTCTT
CSMIC43F	GCAGAATCACTACTTGAAGACA
CSMIC43R	TGAGATGGATATATTCTCTGA
CSMIC51F	GACGGGTAGTAGAAAGTTCTTCA
CSMIC51R	CGAATGGGTCTCCAAACCCT
CSMIC23F	GTCACTTACATGTTGGTGT
CSMIC23R	AATTCTATTCCAAGGCTCCA
CSMIC14F	CCTTGTCTTGAACGAATGTCTG
CSMIC14R	TTGCAGAATCCTTGGCCTTA
ABRII/Cs 10F/R	GGATGTACTTAGGTTGTG GGAAACCCTAACTAGGT
ABRII/Cs 30F/R	TCTCTCATGTTACAATCCTC CTGTGTTGAAGGGATATCTA
ABRII/Cs 42F/R	ATTAACACCGGTCACTAGA GAAGGTATCTCTCTCTTT
ABRII/Cs 48F/R	TCCCTAAACTTGTACTGAGA TCCCGGTATGTAACTATGTA
ABRII/Cs 56F/R	AGAAGAGAGACGAGAAAC GTACATGAATCCAACTATCC
ABRII/Cs 2F/R	ATACGGTAACATCAGGAAG AGTAATCCACGCGTCAAGGT

I risultati non hanno permesso di identificare sufficienti polimorfismi per raggiungere l'obiettivo del progetto di caratterizzare le accessioni di zafferano umbre, anche in relazione a quelle internazionali. Questo è dovuto alla scarsa diversità genetica delle accessioni determinata dalla moltiplicazione vegetativa dello zafferano. Probabilmente in questo caso la diversità genetica tra individui si può associare a mutazioni puntiformi (es. inserzioni/delezione/sostituzioni) non rilevabili con marcatori SSR. Ciò ha determinato la necessità di identificare marcatori molecolari più efficienti per la caratterizzazione genetica. D'intesa con il capofila, è stato proposto l'utilizzo di marcatori SNPs (polimorfismi a singolo nucleotide) basati su

tecniche di sequenziamento NGS (Next Generation Sequencing) che sono in grado di evidenziare mutazioni a livello di singole basi.

A partire da ottobre 2019, sono stati prelevati dei nuovi tessuti fogliari da tre individui (repliche) per ciascuna accessione e questi sono stati conservati a -80 °C. Il DNA genomico è stato successivamente estratto da tutte le accessioni elencate in tabella 14 e quantificato mediante Qubit, un fluorimentro di ultima generazione che è in grado di quantificare in maniera estremamente precisa le concentrazioni di DNA. I dati quantitativi dei campioni sono riportati in Tabella 14 e i parametri sono risultati idonei per l'analisi SNPs.

Tabella 14 - Codice di laboratorio identificativo il singolo campione, località di provenienza e quantificazione del DNA genomico (ng/µL).

Campione Località di provenienza Concentrazione del campione (ng/μL) IND_2 India 25 IND_3 India 17,1 IND_4 India 25,2 GNP_2 Umbria, Italia 36,3 GNP_3 Umbria, Italia 24,2 GNP_4 Umbria, Italia 25,2 SPGb_1 Spagna 13,9 SPGb_3 Spagna 29,8 SPGb_4 Spagna 31,9 TRC_1 Turchia 15,6 TRC_3 Turchia 27,4 TRC_4 Turchia 31,9 MOR_3 Umbria, Italia 31,9 MOR_4 Umbria, Italia 31,9 MOR_5 Umbria, Italia 17,1 ARG_1 Argentina 29,3 ARG_2 Argentina 17 ARG_3 Argentina 38 BRS_1 24,5 BRS_3 18,9 BRS_4 30,6 BRS_5 19,7			
IND_3 India 17,1 IND_4 India 25,2 GNP_2 Umbria, Italia 36,3 GNP_3 Umbria, Italia 24,2 GNP_4 Umbria, Italia 25,2 SPGb_1 Spagna 13,9 SPGb_3 Spagna 29,8 SPGb_4 Spagna 31,9 TRC_1 Turchia 15,6 TRC_3 Turchia 25,8 MOR_3 Umbria, Italia 31,9 MOR_4 Umbria, Italia 39 MOR_5 Umbria, Italia 39 MOR_5 Umbria, Italia 17,1 ARG_1 Argentina 17 ARG_3 Argentina 38 BRS_1 BRS_3 BRS_4 BRS_4 30,6	Campione		
IND_4 India 25,2 GNP_2 Umbria, Italia 36,3 GNP_3 Umbria, Italia 24,2 GNP_4 Umbria, Italia 25,2 SPGb_1 Spagna 13,9 SPGb_3 Spagna 29,8 SPGb_4 Spagna 31,9 TRC_1 Turchia 15,6 TRC_3 Turchia 27,4 TRC_4 Turchia 25,8 MOR_3 Umbria, Italia 31,9 MOR_4 Umbria, Italia 39 MOR_5 Umbria, Italia 17,1 ARG_1 Argentina 29,3 ARG_2 Argentina 17 ARG_3 Argentina 38 BRS_1 24,5 BRS_3 BRS_4 30,6	IND_2	India	25
GNP_2 Umbria, Italia 36,3 GNP_3 Umbria, Italia 24,2 GNP_4 Umbria, Italia 25,2 SPGb_1 Spagna 13,9 SPGb_3 Spagna 29,8 SPGb_4 Spagna 31,9 TRC_1 Turchia 15,6 TRC_3 Turchia 27,4 TRC_4 Turchia 25,8 MOR_3 Umbria, Italia 31,9 MOR_4 Umbria, Italia 39 MOR_5 Umbria, Italia 17,1 ARG_1 Argentina 29,3 ARG_2 Argentina 38 BRS_1 Argentina 39,6 BRS_3 BRS_4 30,6	IND_3	India	17,1
GNP_3 Umbria, Italia 24,2 GNP_4 Umbria, Italia 25,2 SPGb_1 Spagna 13,9 SPGb_3 Spagna 29,8 SPGb_4 Spagna 31,9 TRC_1 Turchia 15,6 TRC_3 Turchia 25,8 MOR_3 Umbria, Italia 31,9 MOR_4 Umbria, Italia 39 MOR_5 Umbria, Italia 17,1 ARG_1 Argentina 29,3 ARG_2 Argentina 17 ARG_3 Argentina 38 BRS_1 24,5 BRS_3 BRS_4 30,6	IND_4	India	25,2
GNP_4 Umbria, Italia 25,2 SPGb_1 Spagna 13,9 SPGb_3 Spagna 29,8 SPGb_4 Spagna 31,9 TRC_1 Turchia 15,6 TRC_3 Turchia 27,4 TRC_4 Turchia 25,8 MOR_3 Umbria, Italia 31,9 MOR_4 Umbria, Italia 39 MOR_5 Umbria, Italia 17,1 ARG_1 Argentina 29,3 ARG_2 Argentina 17 ARG_3 Argentina 38 BRS_1 24,5 BRS_3 18,9 BRS_4 30,6	GNP_2	Umbria, Italia	36,3
SPGb_1 Spagna 13,9 SPGb_3 Spagna 29,8 SPGb_4 Spagna 31,9 TRC_1 Turchia 15,6 TRC_3 Turchia 27,4 TRC_4 Turchia 25,8 MOR_3 Umbria, Italia 31,9 MOR_4 Umbria, Italia 39 MOR_5 Umbria, Italia 17,1 ARG_1 Argentina 29,3 ARG_2 Argentina 17 ARG_3 Argentina 38 BRS_1 24,5 BRS_3 18,9 BRS_4 30,6	GNP_3	Umbria, Italia	24,2
SPGb_3 Spagna 29,8 SPGb_4 Spagna 31,9 TRC_1 Turchia 15,6 TRC_3 Turchia 27,4 TRC_4 Turchia 25,8 MOR_3 Umbria, Italia 31,9 MOR_4 Umbria, Italia 39 MOR_5 Umbria, Italia 17,1 ARG_1 Argentina 29,3 ARG_2 Argentina 17 ARG_3 Argentina 38 BRS_1 24,5 BRS_3 18,9 BRS_4 30,6	GNP_4	Umbria, Italia	25,2
SPGb_4 Spagna 31,9 TRC_1 Turchia 15,6 TRC_3 Turchia 27,4 TRC_4 Turchia 25,8 MOR_3 Umbria, Italia 31,9 MOR_4 Umbria, Italia 39 MOR_5 Umbria, Italia 17,1 ARG_1 Argentina 29,3 ARG_2 Argentina 17 ARG_3 Argentina 38 BRS_1 24,5 BRS_3 18,9 BRS_4 30,6	SPGb_1	Spagna	13,9
TRC_1 Turchia 15,6 TRC_3 Turchia 27,4 TRC_4 Turchia 25,8 MOR_3 Umbria, Italia 31,9 MOR_4 Umbria, Italia 39 MOR_5 Umbria, Italia 17,1 ARG_1 Argentina 29,3 ARG_2 Argentina 17 ARG_3 Argentina 38 BRS_1 24,5 BRS_3 18,9 BRS_4 30,6	SPGb_3	Spagna	29,8
TRC_3 Turchia 27,4 TRC_4 Turchia 25,8 MOR_3 Umbria, Italia 31,9 MOR_4 Umbria, Italia 39 MOR_5 Umbria, Italia 17,1 ARG_1 Argentina 29,3 ARG_2 Argentina 17 ARG_3 Argentina 38 BRS_1 24,5 BRS_3 18,9 BRS_4 30,6	SPGb_4	Spagna	31,9
TRC_4 Turchia 25,8 MOR_3 Umbria, Italia 31,9 MOR_4 Umbria, Italia 39 MOR_5 Umbria, Italia 17,1 ARG_1 Argentina 29,3 ARG_2 Argentina 17 ARG_3 Argentina 38 BRS_1 24,5 BRS_3 18,9 BRS_4 30,6	TRC_1	Turchia	15,6
MOR_3 Umbria, Italia 31,9 MOR_4 Umbria, Italia 39 MOR_5 Umbria, Italia 17,1 ARG_1 Argentina 29,3 ARG_2 Argentina 17 ARG_3 Argentina 38 BRS_1 24,5 BRS_3 18,9 BRS_4 30,6	TRC_3	Turchia	27,4
MOR_4 Umbria, Italia 39 MOR_5 Umbria, Italia 17,1 ARG_1 Argentina 29,3 ARG_2 Argentina 17 ARG_3 Argentina 38 BRS_1 24,5 BRS_3 18,9 BRS_4 30,6	TRC_4	Turchia	25,8
MOR_5 Umbria, Italia 17,1 ARG_1 Argentina 29,3 ARG_2 Argentina 17 ARG_3 Argentina 38 BRS_1 24,5 BRS_3 18,9 BRS_4 30,6	MOR_3	Umbria, Italia	31,9
ARG_1 Argentina 29,3 ARG_2 Argentina 17 ARG_3 Argentina 38 BRS_1 24,5 BRS_3 18,9 BRS_4 30,6	MOR_4	Umbria, Italia	39
ARG_2 Argentina 17 ARG_3 Argentina 38 BRS_1 24,5 BRS_3 18,9 BRS_4 30,6	MOR_5	Umbria, Italia	17,1
ARG_3 Argentina 38 BRS_1 24,5 BRS_3 18,9 BRS_4 30,6	ARG_1	Argentina	29,3
BRS_1 24,5 BRS_3 18,9 BRS_4 30,6	ARG_2	Argentina	17
BRS_3 18,9 BRS_4 30,6	ARG_3	Argentina	38
BRS_4 30,6	BRS_1		24,5
	BRS_3		18,9
BRS_5 19,7	BRS_4		30,6
	BRS_5		19,7

Sottomisura 16.2.2 - Focus Area 3A - Determina Ministeriale/Dirigenziale DD n.5931 del 11/06/2018 - Zafferano puro e certo

IDANo. 1	lron	00.0
IRANa_1	Iran	22,2
IRANa_2	Iran	32,4
IRANa_4	Iran	22,4
GRCa_1	Grecia	22,1
GRCa_3	Grecia	3,15
GRCa_4	Grecia	23,6
FRANb_1	Francia	23,6
FRANb_2	Francia	29,9
FRANb_4	Francia	14,3
FRANa_2	Francia	20,6
FRANa_3	Francia	21,9
FRANa_4	Francia	29,1
MAZ_1	Umbria, Italia	12,2
MAZ_2	Umbria, Italia	20
MAZ_4	Umbria, Italia	28,1
SPa_1	Spagna	41,1
SPa_2	Spagna	29,4
SPa_3	Spagna	18,9
SPa_4	Spagna	16,3
GRCb_1	Grecia	32,9
GRCb_3	Grecia	17,9
G_G_1	Iran	30,2
G_G_3	Iran	33,4
G_G_5	Iran	33,8
8_15_1	Iran	26,6
8_15_3	Iran	32,3
8_15_5	Iran	35
VNB_2	Umbria, Italia	18,8
VNB_3	Umbria, Italia	16,3
VNB_4	Umbria, Italia	29,1
VEN_2	Umbria, Italia	49,9
VEN_4	Umbria, Italia	40,2
VEN_5	Umbria, Italia	33,5
FIN_1	Umbria, Italia	23,2
FIN_2	Umbria, Italia	35,8
FIN_5	Umbria, Italia	24,8
		,-

Sottomisura 16.2.2 - Focus Area 3A - Determina Ministeriale/Dirigenziale DD n.5931 del 11/06/2018 - Zafferano puro e certo

LIP_1	Umbria, Italia	26,5
LIP_2	Umbria, Italia	43,2
LIP_4	Umbria, Italia	21
BSC_1		30,8
BSC_2		22,7
BSC_3		28
8-1_1	Iran	31,3
8-1_2	Iran	41,6
8-1_5	Iran	31,5
B_1_5		25,4
8-3_4	Iran	39,3
8-3_5	Iran	31,8
4-10_3	Iran	42,2
4-10_4	Iran	53
4-3_1	Iran	25,3
4-3_2	Iran	31,5

A seguito dell'emergenza sanitaria dovuta al COVID-19, il lavoro è proseguito a ritmo rallentato.

Nel terzo anno si procederà al sequenziamento e all'analisi bioinformatica degli SNPs.

Considerazioni conclusive e rilevanza applicativa dei risultati

Le conclusioni che è possibile trarre dopo tre anni di sperimentazione sono le seguenti.

1. La coltivazione in cassoni rialzati è possibile e interessante se unita a un substrato di coltivazione come quello adottato nel progetto. La comune terra di campo presente nelle diverse aziende coinvolte nel progetto è risultata generalmente argillosa e povera in sostanza organica, e usata tal quale non ha sempre fornito gli stessi risultati del terriccio ad hoc. Una possibile alternativa è ricorrere ad ammendanti che ne correggano le proprietà fisiche, aumentandone permeabilità e scioltezza, e quelle organiche, aumentandone il contenuto in sostanza organica. Dobbiamo ricordare che lo zafferano predilige terreni sciolti sia perchè soffre di ristagni idrici che creano le condizioni per attacchi fungini sia per permettere un buon ingrossamenti dei bulbi "figli".

I cassoni utilizzati nella sperimentazione hanno avuto dimensioni ridotte per limitarne i costi di costruzione. Sulla base di queste esperienze si suggerisce di utilizzare contenitori di dimensioni maggiori tali da permettere la raccolta dei fiori da tutte i lati del contenitore, e più profondi per evitare di incorrere in stress idrici in annate particolarmente siccitose (vedi secondo anno). L'azienda Porta

Sottomisura 16.2.2 - Focus Area 3A - Determina Ministeriale/Dirigenziale DD n.5931 del 11/06/2018 - Zafferano puro e certo

Sole ha suggerito ad esempio di utilizzare su più larga scale i comuni contenitori in legno per la frutta

(bins) disponibili in dimensioni variabili. Bins usati di 110×110×75 cm hanno un costo di pochi euro.

La domanda è se l'investimento iniziale tra contenitori e terriccio viene compensato dalle maggiori

produzioni di zafferano. Nell'analisi costi/benefici devono essere comprese anche il numero di fiori

raccolti per unità di tempo e le condizioni di lavoro per messa a dimora e raccolta, più agevoli rispetto

a terra.

2. La qualità dello zafferano prodotto nei tre anni è risultato sempre di ottima qualità. Le modalità di

essiccazione che le aziende del progetto già adottano sono quelle che in letteratura scientifica sono

state indicate da tempo come le migliori: essiccazione con esposizione degli stigmi a 65-75 °C per

pochi minuti seguita da una esposizione a temperature più basse (50-55 °C) per circa 50 minuti, o per

il tempo necessario a portare il contenuto in umidità al disotto del 10 %. Dalla tabella 14 è evidente

che l'umidità è risutata sempre inferiore a 9 % e che la qualità dello zafferano prodotto in termini di

contenuto in crocina, picrocrocina e safranale è sempre risultato di Categoria I.

Bibliografia citata

Rubio-Moraga, A., Castillo-López, R., Gómez-Gómez, L., & Ahrazem, O. (2009). Saffron is a

monomorphic species as revealed by RAPD, ISSR and microsatellite analyses. BMC research

notes, 2(1), 1-5.

Nemati, Z., Zeinalabedini, M., Mardi, M., Pirseyediand, S. M., Marashi, S. H., & Khayam

Nekoui, S. M. (2012). Isolation and characterization of a first set of polymorphic microsatellite

markers in saffron, Crocus sativus (Iridaceae). American journal of botany, 99(9), e340-e343.

Namayandeh, A., Nemati, Z., Kamelmanesh, M. M., Mokhtari, M., & Mardi, M. (2013).

Genetic relationships among species of Iranian crocus (Crocus spp.).

Il Responsabile scientifico del DSA3

Prof. Luigi Russi

15